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We present a theoretical study of the nematic director field reorientation dynamics induced by
the magnetic field rotation as a function of the magnetic field intensity, the field rotation time
and the angle of rotation. A nematic monodomain sample with positive anisotropy of the
magnetic susceptibility between two parallel plates with planar boundary conditions and rigid
anchoring is studied. The director remains in a plane (parallel to the plates) defined by its
initial orientation and the final magnetic field direction. The cases of thin and thick sample
dimensions in the direction perpendicular to the director spanning plane are considered in this
work. It is found that the (thermally excited) periodic modes are amplified during the director
reorientation process only if the magnetic field deviates from the initial director by more than
a critical angle ac(B, tr) where B is the magnetic induction and tr is the magnetic induction
rotation time. In the case of large plate separation, ac increases with increasing tr at fixed field
and with increasing field at fixed tr in the range of fields studied. For the thin sample case, ac

increases with increasing tr at fixed field and passes through a minimum with increasing field
at fixed tr. In both cases the wave vector increases monotonously with the magnetic field
intensity at constant final field orientation a0 and constant tr. At constant field and tr the
selected mode’s amplitude and wave vector increase with increasing a0, reaching a maximum
value for a0 slightly above p/2, also in both cases.

1. Introduction

The sustained interest in self-organization phenomena

in complex systems, such as the formation of periodic

spatio-temporal structures on macroscopic scales in

systems far from equilibrium, is related to the recogni-

tion of the similarities between the underlying dynami-

cal instabilities in physical, chemical, biological and

technological systems.

The fact that similar phenomena appear in many

different systems is explained by their description in

terms of non-linear partial differential equations. When

a stationary solution exists, this allows the study of its

stability by standard methods [1]. That is not the case

reported in this work, where the system under study

develops a (magnetic) field-induced transient spatial

periodic pattern [2], and consequently we use a

perturbation method for the study of the phenomena.

The study of the transient periodic patterns arising in

the magnetically-induced reorientation of nematic

liquid crystalline samples has been carried out by

several authors [3]. Usually a continuous or sudden

rotation of either the field or the sample are considered.

When sudden rotations are considered the great

majority of studies available focus on the case of a p/2

rotation angle relative to the initial director orientation,

such as in Fréedericksz geometries [4–8] or in magnetic

reorientation NMR experiments [9–12]. Experimental

and theoretical results [2, 3, 13, 14] indicate that the

periodic structures can also be present in non-orthogo-

nal geometries. In the orthogonal geometry the periodic

perturbations develop for a magnetic field above a

critical value as a consequence of the degeneracy in the

reorientation direction of the director back to the field

direction [8]. In the non-orthogonal case the periodic

perturbations are also expected when the orthogonal

component of the magnetic field is strong enough,

which implies the existence of a critical value for this

component [13].

The theoretical studies of this situation so far are

limited to sudden rotations of either the field or the

sample, and do not consider the director evolution

during the initial misalignment between the director and

the magnetic field due to the finite rotation time tr. In*Corresponding author. Email: figuei@cii.fc.ul.pt
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this work we consider the rotation of the magnetic field

in the presence of a static sample. In the actual

experiment it is easier to rotate the sample in a static

magnetic field. In that case it must be checked that the

nematic follows the rotation of the sample container

[15]. In this study the model developed accounts for the

initial misalignment process and follows the reorienta-

tion of the director back to equilibrium using a

perturbation method. Our perturbation approach is

consistent with the results of the optical experiments

reported in [2]; when the initial misalignment between

the director and the magnetic field departs significantly

from p/2, the periodic structures become increasingly

less visible, indicating that their amplitude is becoming

very small for such angles. The numerical simulations

obtained correspond to the linear mode. Only near the

orthogonal condition do the amplitudes of the periodic

perturbations grow sufficiently that the non-linear

mode is selected and leads to the formation of the

(splay–bend) inversion walls that arise in the twist

Fréedericksz geometry [2].

This theoretical study considers the nematic director

field reorientation dynamics as a function of the

magnetic field intensity, the field rotation time and the

angle of rotation. A nematic monodomain sample with

positive anisotropy of the magnetic susceptibility

between two parallel plates with planar boundary

conditions and rigid anchoring is analysed. The director

remains in a plane (parallel to the plates) defined by its

initial orientation and the final magnetic field direction.

Both a thin and a thick sample in the direction

perpendicular to the director spanning plane are

considered.

The model simulations for a 5CB nematic slab show

that during the reorientation process, the (thermally

excited) periodic modes are amplified during the

director reorientation process only if the magnetic field

deviates from the initial director more than a critical

angle ac(tr), where tr is the field rotation time. Under

that condition, the selected mode reaches the highest

amplitude at a certain instant tm, and the mode’s

amplitude and wave vector at tm as well as time tm are

determined as a function of magnetic field intensity and

final orientation a0 relative to the initial director for a

fixed tr. In the thick sample case, ac increases with

increasing tr at fixed field and with increasing field at

fixed tr in the range of fields studied. For the thin

sample, ac increases with increasing tr at fixed field and

passes through a minimum with increasing field at fixed

tr; tm decreases monotonously with the magnetic field at

constant a0 and tr. The wave vector increases mono-

tonously with the magnetic field at constant a0 and tr.

At constant field and tr, the selected mode’s amplitude

and wave vector increase with increasing rotation angle

a0, reaching a maximum value for a0 slightly above p/2.

The maximum of both the mode’s amplitude and wave

vector is only reached for a0 above p/2 because during

the initial field rotation away from the director, the

director partially follows the field due to the low

viscosity of the nematic compound considered.

2. The model

We describe the director reorientation by a magnetic

field within the context of the Leslie–Ericksen nemato-

dynamic equations [16], considering that the director

remains in the plane defined by its initial orientation
(aligned with the magnetic field) and the final orienta-

tion of the magnetic field rotated of an angle ao from its

initial direction. In the model the director and velocity

fields are parameterized by an ansatze that considers the

reorientation process as a composition of two terms: a

homogeneous reorientation with no flow associated,

and a periodic perturbation which involves flow.

The director, fluid velocity and magnetic induction

are respectively:

n~cos h x, y, z, tð Þ½ �exzsin h x, y, z, tð Þ½ �ey

v~vx x, y, z, tð Þexzvy x, y, z, tð Þey

B~B cos a tð Þð Þexzsin a tð Þð Þey

� �
ð1Þ

with h, vx and vy given by:

h x, y, z, tð Þ~h0 tð Þcos qzzð Þ

zjh t, qð Þcos qxxzqyy
� �

cos qzzð Þ

vx x, y, z, tð Þ~{jv t, qð Þqy sin qxxzqyy
� �

cos qzzð Þ

vy x, y, z, tð Þ~jv t, qð Þqx sin qxxzqyy
� �

cos qzzð Þ:

ð2Þ

qz5p/d where d is the sample thickness; h0(t) is the

amplitude of the homogeneous reorientation; jh (t, q) is

the amplitude of the periodic perturbation superim-
posed to it with wave vector q5qxex+qyey. Also jv(t, q)

is the velocity amplitude associated with the periodic

perturbation; a(t) is the angle between the initial

director (pointing along the x-axis) and the magnetic

field, and is time-dependent during the initial misalign-

ment between the director and the magnetic field

varying from 0 to a0 linearly in time tr. Starting from

the director equation in the Leslie–Ericksen formulation
[16] and neglecting the inertia of the director as is

usually done we obtain in the mid-plane (z50) the

equation for h0(t):

dh0 tð Þ
dt

~
xaB2

2c1m0

sin 2a tð Þ{2h0 tð Þð Þ{ K2q2
z

c1

h0 tð Þ ð3Þ

where xa is the anisotropy of the magnetic susceptibility,
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m0 is the magnetic permeability of vacuum, B is the

magnetic induction, c1 is the director rotational

viscosity and K2 is the twist elastic constant.

Inserting n, v, and B in the velocity and director

equations of the Leslie–Ericksen formulation [16] and

keeping only the terms linear in jh (t, q) and jv(t, q) we

obtain in the middle plane (z50) the following set of

first order differential equations:

a11
djh t, qð Þ

dt
za12

djv t, qð Þ
dt

~b11jh t, qð Þzb12jv t, qð Þ

a21
djh t, qð Þ

dt
za22

djv t, qð Þ
dt

~b21jh t, qð Þzb22jv t, qð Þ:
ð4Þ

The coefficients amn and bmn are time-dependent through

h0(t) and a(t). They are complicated functions of h0(t),

a(t), x
aB2, the wave vector q, the three elastic constants

K1, K2, K3 and the five independent viscosity coefficients

a1 to a5, and are given in the appendix. jh (t, q) and jv(t, q)

are obtained by numeric integration of the above system

using standard methods [17]. Prior to the integration of

system (4), h0(t) has to be obtained from the numeric

integration [17] of equation (3) since it enters into the

coefficients amn and bmn. The initial condition for jh(0, q)

is taken from the thermal fluctuations of the director

while still aligned with the magnetic field and jv(0, q)

follows jh(0, q) adiabatically as determined by the Leslie–

Ericksen equations [16]. According to the equipartition

theorem <jh (0, q)2> is given by:

Sjh(0, q)2T~
42kBT

V

q2
y

q2
yzq2

z

1

K1 q2
yzq2

zð ÞzK3q2
xzxa

B2

m0

z

q2
z

q2
yzq2

z

1

K2 q2
yzq2

zð ÞzK3q2
xzxa

B2

m0

8
>><

>>:

9
>>=

>>;
ð5Þ

with V50.4 cm3 for the thick sample and V50.02 cm3

for the thin sample; kB is the Boltzman constant and T

the absolute temperature. The integration of system (4)

with initial amplitude estimated from (5) up to time t

is carried out as a function of q, and the maximum

jh(t, q) is recorded as jh(t). The wave vector q that

maximizes jh(t, q) is also recorded as qm(t). One then

obtains at each time t the amplitude jh (t) and the

wave vector qm(t) of the highest mode.

During the reorientation process, depending upon the

value of a0 and tr, jh(t) can evolve in different ways;

when a0 is larger than ac(tr), jh(t) is seen to reach a

maximum amplitude at a specific time tm and decays

afterwards. In the following, the values of jh(tm) and

qm(tm) will simply be referred to as jh and qm. When a0

is smaller than ac(tr), jh(t) is seen either to decrease

monotonically from its value at t50 or to go through a

local maximum although inferior to jh(0) at a specific

time tm; ac is accordingly defined as the value of a0 for

which jh (tm)5jh (0).

The model developed considers a finite magnetic field

rotation time tr, and this, along with the low viscosity of

5CB, originates that the director partially follows the

magnetic field during the initial field rotation of a0,

yielding an effective field rotation angle aeff smaller than

a0. aeff is the relevant angle in the build-up of magnetic

energy in the nematic sample, and its dependence on

both tr and the magnetic field is now analysed. For

simplicity we shall restrict our remarks to the thick

sample case where boundary effects can be neglected in

a first approximation, and so avoiding the mathematical

complications arising from taking into account the

director elasticity in the case of the thin sample which is

unimportant for the physical problem that we now

discuss. From figure 1, we define the effective angle of

rotation as

aeff tð Þ~a tð Þ{h0 tð Þ~a0
t

tr
{h0 tð Þ: ð6Þ

The maximum effective angle between the director and

the magnetic field during the field rotation process (up

to the time t5tr) is obtained through

daeff tð Þ
dt

~0~
a0

tr
{

dh0 tð Þ
dt

ð7Þ

and using the (uniform) director dynamic equation for

the thick sample case, neglecting boundary effects we

obtain

sin 2aeffð Þ~ 2c1m0

xaB2

a0

tr
~2

t0

tr
a0 ð8Þ

from which we see that

lim
t0=tr?0

aeff~0 ð9Þ

which means that the director follows instantaneously

the magnetic field in the case of a very slow field

Figure 1. Schematic representation of the director and
magnetic field after the initial field rotation away from the
director initially along x. a0 is the field rotation angle and aeff

is the effective value of the angle between the director and the
magnetic field.
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rotation or a very intense magnetic field. In the case of

the thin sample similar trends for aeff are expected.

3. Results and discussion

For the simulations carried out we consider the

viscoelastic parameters of 5CB as given in [18] for

T5299.15 K. In the simulations the thickness of the thin

sample was 50 mm and the thickness of the thick sample

was 1 mm.

The time dependence of the perturbation amplitude

and wave vector is illustrated in figures 2 and 3 which

show jh(t9) and |qm(t9)| for the thin and thick samples as

a function of the reduced time t9 defined as

t0:t xaB2
�

m0{K2q2
z

� ��
c1, with B50.5 T, a0588u and

tr520 ms. The behaviour of jh(t9) and |qm(t9)| for

different values of B, a0 and tr is similar to figures 2

and 3 as long as a0.ac. ac is a function of both B and tr,

and figures 4 and 5 show the magnetic induction

dependence of ac for the thin and thick samples for

different values of tr, while figure 6 gives the rotation

time (tr) dependence of ac in the thin and thick samples

for B50.3 T and 0.5 T.

A lower bound for ac when tr approaches zero can be

obtained from the dynamical stability analysis at t50

[14]. The lower bounds for ac obtained for the thin and

thick samples and for B50.5 T and 0.3 T are, respec-

tively: ac(B50.5 T, qz?0)542u, ac(B50.5 T, qz–0)535u,
ac(B50.3 T, qz?0)547u ac(B50.3 T, qz–0)535u, which

are consistent with the values reported in figure 6 for tr

approaching 0. The increase of ac with both tr and the

magnetic field in the thick sample may be understood

from equation (8): a larger a0 is needed in order that aeff

Figure 2. Time dependence of the periodic perturbation
amplitude jh(t9) for the thin (A) and thick (B) samples with
B50.5 T, a0588u and tr520 ms. t9 is the reduced time,
t0:t xaB2

�
m0{K2q2

z

� ��
c1.

Figure 3. Time dependence of the periodic perturbation
wave vector |qm(t9)| for the thin (A) and thick (B) samples
with B50.5 T, a0588u and tr520 ms.

Figure 4. Magnetic induction dependence of the critical
rotation angle ac in the thin sample for two values of the
field rotation time tr. Circles correspond to tr520 ms and
triangles to tr540 ms.

Figure 5. Magnetic induction dependence of the critical
rotation angle ac in the thick sample for three values of the
field rotation time tr. Circles correspond to tr520 ms, triangles
to tr540 ms and diamonds to tr50.1 s.
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attains the required value for the instability amplitude

to reach, at time tm, the same value it had at t50.

The magnetic induction dependence of the perturba-

tion amplitude jh and wave vector qm for the thin and

thick samples for a0588u and tr520 ms, is given in

figures 7, 8 and 9; tm decreases monotonously with the

magnetic induction. To illustrate the a0 dependence of

the perturbation amplitude jh, wave vector qm and tm

for tr520 ms and B50.5 T, figures 10,11,12 and13 are

presented. Figures 11–13 show that the transition from

homogeneous to periodic reorientation is discontinuous

for the above values of the control parameters. The

stability analysis at t50 indicates that the transition

may change from discontinuous to continuous depend-

ing on the value of the reduced magnetic field [14]. The

same results also indicate that for the field used in

figures 11–13 the transition should be discontinuous.

For a0 in the vicinity of p/2 the perturbation

approach should lose validity when the condition of

the small perturbation amplitude is broken, and

consequently non-linear terms should be added in order

to limit the divergence of the amplitude for a0 near p/2

(see figure 10).

In the thick sample case, ac increases with increasing

tr at fixed field (Fig. 6) and with increasing field at fixed

tr (Fig. 5). For the thin sample case, ac increases with

increasing tr at fixed field (Fig. 6), and it goes through

a minimum with increasing field at fixed tr (Fig. 4); tm

decreases monotonical with the magnetic field at

constant a0 and tr in agreement with the experimental

results reported in [2]. The wave vector also increases

monotonously with the magnetic field at constant a0

and tr (Fig. 8) in agreement with the experimental

Figure 6. Field rotation time dependence of the critical
rotation angle ac in the thick and thin samples for two values
of the magnetic induction. Full symbols correspond to the
thick sample, squares correspond to B50.3 T and circles to
B50.5 T.

Figure 7. Magnetic induction dependence of the periodic
perturbation amplitude jh for the thin (A) and thick (B)
samples with a0588u and tr520 ms.

Figure 8. Magnetic induction dependence of the periodic
perturbation wave vector |qm| for the thin (A) and thick (B)
samples with a0588u and tr520 ms.

Figure 9. Magnetic induction dependence of the periodic
perturbation wave vector orientation angle w for the thin
(circles) and thick (squares) samples with a0588u and
tr520 ms.
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results reported in [2]. The mode’s amplitude passes

through a maximum at a certain field for the thin

sample case and decreases monotonously in the thick

sample case (Fig. 7). At constant field and tr the selected

mode’s amplitude and wave vector increase with

increasing rotation angle a0, reaching a maximum value

for a0 slightly above p/2 (Figs 10 and 11). The maximum

of both the mode’s amplitude and wave vector is only

reached for a0 above p/2 because during the initial field

rotation away from the director, the director partially

follows the field due to the low viscosity of the nematic

compound considered and the effective rotation angle

aeff becomes smaller than a0.

Global considerations based on the magnetic energy

stored in the system which is driving the reorientation

process may help to clarify some of the general trends

detected. The perturbation amplitude jh dependence on

the magnetic field shows distinct behaviours for the thin

and thick samples. In the thin sample, above the twist

Fréedericksz critical field the perturbation amplitude

increases to a maximum and decreases monotonously

afterwards; in the thick sample only the monotonous

decrease is evident because the maximum is attained

outside the scanned field values (Fig. 7). This mono-

tonous decrease may be associated with an increasing

faster reorientation process, which cuts short the growth

process of the periodic mode. The critical angle

dependence on the magnetic induction also shows an

Figure 10. Field rotation angle (a0) dependence of the
periodic perturbation amplitude jh for the thin (circles) and
thick (squares) samples for B50.5 T and tr520 ms.

Figure 11. Field rotation angle (a0) dependence of the
periodic perturbation wave vector |qm| for the thin (A) and
thick (B) samples for B50.5 T and tr520 ms.

Figure 12. Field rotation angle (a0) dependence of the
periodic perturbation wave vector (qm) orientation for the
thin (circles) and thick (squares) samples for B50.5 T and
tr520 ms.

Figure 13. Field rotation angle (a0) dependence of tm for the
thin (circles) and thick (squares) samples with B50.5 T and
tr520 ms. For a0,ac, tm refers to the homogenous mode
(q50).
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apparent distinct behaviour for the thin and thick

sample cases (Figs 4 and 5). This arises once more due

to the limited range of fields spanned, since for the thick

sample case the minimum should be at a lower field

than those studied, as the data for the lowest fields

recorded indicates.

The wave vector increase with the magnetic field is a

well known feature of the linear mode [8, 19] and

traduces the existence of sufficient magnetic energy to

compensate for the elastic distortion produced by a

larger wave vector associated with a faster growing

mode. The wave vector orientation given by w5tan21

(qy/qx) is mainly dependent upon a0 and decreases with

increasing a0; w reaches 0 when aeff5p/2, and as a

consequence of the finite field rotation time tr, the zero

inclination (w50) bands occur for values of a0 and B

related by the curves represented in figure 14 for

different values of tr and for the thin and thick samples.

This asymmetry in band inclination around a05p/2 is

clearly observed in the experimental results obtained in

5CB samples [2].

The monotonous decrease of tm with the magnetic

field [2] is direct evidence of a faster reorientation

process as the magnetic field intensifies. The length scale

of the periodic pattern is set by the cell width as

expected [20].

4. Conclusions

The perturbative analysis of the director reorientation

dynamics in thin and thick nematic samples for non-

orthogonal geometries, presented in this work, predicts

the existence of transient periodic patterns for field

deviations from the initial director greater than a critical

angle ac, dependent upon the magnetic field rotation

time, the final angle of rotation and the field intensity.

Thermally excited periodic modes are selectively ampli-

fied during the reorientation process, reaching a

maximum amplitude and later fading as predicted by

an earlier analysis with tr50 [3]. The selected mode only

attains a significant amplitude near the orthogonal

condition between the field and the initial director, in

agreement with the experimental results obtained in

studies with 50 mm thick 5CB nematic samples, where

the periodic structures are only found in the vicinity of

the Fréedericksz (twist) geometry [2].

The model predictions are in good agreement with

these experimental results, in particular the predicted

magnetic field dependence of the magnitude and

orientation of the wave vector, and the time to reach

the maximum amplitude of the perturbation, fit very

well the measured values as reported in [2]. Our results

show that the perturbation method that we used to

study the formation of periodic stripes during the

reorientation of thin and thick nematic media induced

by a finite magnetic field rotation is appropriate. This

suggests that this method could be used to model similar

non-stationary pattern-forming phenomena in other

systems.
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Appendix

a11~a3q2
x{a2q2

yzc2 C2
h q2

y{q2
x

� �
{qxqy2ChSh

h i
ðA1Þ

a12~{r q2
xzq2

y

� �
ðA2Þ

a21~c1 ðA3Þ

a22~0: ðA4Þ

b11~2c2

:
h q2

x{q2
y

� �
ChShzqxqy 1{2C2

h

� �h i
: ðA5Þ

b12~2qxqyq2
z gb{gað ÞChShzq2

xq2
z gb{gað ÞC2

h{gb

� 	

{q2
yq2

z gb{gað ÞC2
hzga

� 	

{q4
x a1{ gb{gcð Þ½ �C2

h{a1C4
hzgb

� �

{q4
y a1z gb{gcð Þ½ �C2

h{a1C4
hzgc

� �

{q3
xqy 2 a1{ gb{gcð Þ½ �ChSh{4a1C3

hSh

� �

zqxq3
y 2 a1z gb{gcð Þ½ �ChSh{4a1C3

hSh

� �

zq2
xq2

y 6a1C2
h 1{C2

h

� �
z a1zgbzgcð Þ

� 	
:

ðA6Þ

b21~q2
x K3{K1ð ÞC2

hzK1

� 	
zq2

y K1{K3ð ÞC2
hzK3

� 	

zqxqy2 K3{K1ð ÞChShzh2
0 cos(2h{2a)½ �:

ðA7Þ

b22~q2
x ½c2C2

h{a3�zq2
y½{c2C2

hza2�

zqxqy2c2ChSh

ðA8Þ

In these equations we have used the notation

Cx:cos x, Sx:sin x

and the definitions

c1~a3{a2, c2~a3za2, ga~
1

2
a4

gb~
1

2
a3za4za6ð Þ; gc~

1

2
a4za5{a2ð Þ; h0~

xa

m0
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